Алан Матисон Тьюринг

Материал из Letopisi.Ru — «Время вернуться домой»
Перейти к: навигация, поиск

http://ru.wikipedia.org/wiki/Тьюринг%2C_Алан_Матисон


Алан Матисон Тьюринг
Алан Матисон Тьюринг
Дата рождения: 23 июня 1912 года
Место рождения: г.Паддингтон, Англия
Дата смерти: 07.06.1954 года
Место смерти: Вилмслоу,Англия

Содержание

Образование

Алан Матисон Тьюринг родился 23 июня 1912 года у Юлиуса Матисона Тьюринга, государственного чиновника в Индии, и Этель Стоней в Паддингтоне, Англия. Отец Алана все еще состоял на действительной службе в Индии и не хотел рисковать и растить семью в далеких провинциях, которыми он управлял. После рождения Алана его отец принял решение оставить свою семью в Англии, чтобы не подвергать её возможному риску, вместо этого он решил путешествовать между Индией и Англией, оставляя семью на попечение своих друзей. Когда Алану было шесть лет, мать отдала его в частную дневную школу Святого Михаила, чтобы он изучил латынь. Так началось знакомство Алана с системой, которая будет заниматься его интеллектуальным и личным воспитанием в течении последующих 14 лет. Английская образовательная система будет одновременно и в конфликте и в единении с чувствами Алана. Cоюз был обусловлен его уважением к правилам и их отношением к его концепции справедливости. Эти идеи лучше всего отражены в случае, когда его мать пропустила при чтении часть The Pilgrim's Progress. Решив, что одна из глав слишком теологически тяжела для мальчика, она, пожалев его, пропустила её, пока читала вслух. Алан заметил это и почувствовал что вся история разваливается: пропускать части, в его понимании, было против правил чтения.

Конфликт Алана с Английской Школьной Системой был частично основан на его убеждении, что он практически всегда прав. Личное мнение он рассматривал практически как факт. Он был одним из тех людей, которые знают что-то, а не думают, чувствуют или имеют мнение. Такой тип мышления был абсолютно несовместим с образовательной системой, построенной на традиции и непоколебимой в вере в то что она знает, что лучше для её воспитанников.

Вскоре директор школы Св. Михаила отметил Алана ярлыком "гений", предсказание, которое будет повторено через несколько лет цыганской гадалкой. Несмотря на такие предсказания, Алан должен был следовать обычному порядку английской школьной системы и по завершению учебы в школе Св. Михаила проследовал по пути своего брата в следующую школу -- Hazelhurst -- а потом в свою частную школу: Marlborough. Частная школа показала отвратительную сторону Английской Школьной Системы и у Алана появились первые проблемы с задирами, которые говорили, что он научился быстро бегать, чтобы "уворачиваться от мяча".

Соприкосновение с наукой Алан познакомился с естественными науками через книгу Эдвина Теннея Бревстера Чудеса природы, которые должен знать каждый ребенок. Книга Бревстера стремилась познакомить читателя с темами, которые помогали детям осознать их место в мире, с тем, что общего и какие различия существуют между ними и другими живыми существами. Открытие естественных наук и знакомство с математикой вылилось в любовь на всю жизнь. Они совпадали с его мироощущениями: в них был порядок и они могли быть исследованы при помощи разума. Жизнь приобретает понятный смысл, если посмотреть на неё под правильным углом. Книга Бревстера была вероятно первой, соединившей в разуме Алана концепции биологии и машины, объяснив, что тело человека было сложной машиной со сложными процессами, которые выполняли рутинные задачи поддержания жизни.

Хотя школа и приносила много мучений, но она также открыла юному Тьюрингу мир знаний. Он выказал ранний интерес и способности к языкам, особенно к французскому, и рассматривал его как код, который позволит ему поддерживать секретное общение. Также Алан, которого всегда очаровали различная процессо-ориентированная деятельность, познакомившись с химией влюбился в неё с первого взгляда и на всю жизнь. Тьюринг любительски занимался химией до конца своих дней, часто используя семейные помещения и гостиные в качестве химической лаборатории. Привычка находить химические решения разных проблем в дальнейшем сыграла свою роль в его безвременной кончине.

Шерборн В возрасте 13 лет Алан был зачислен в школу-пансион Шерборн. Ко времени начала школьного семестра лета 1926 года жизнь в Англии была остановлена первым днем всеобщей забастовки. Не ходили ни автобусы, ни поезда. Тьюринг наделал шуму и попал в местную газету, за то, что преодолел на велосипеде 60 миль, отделяющие его дом в Саутхэмптоне от Шерборна, переночевав в гостинице на полпути.

Шерборн и Алан были отнюдь не лучшей парой. Шерборн, как и многие английские школы того времени, была сфокусирована на создании граждан а не "грамотеев". Директор этого учебного заведения, в то время как туда был зачислен Алан, продвигал идею, что школа была изначально создана для того, чтобы быть миниатюрной моделью общества. Студенты должны были учиться преодолевать трудности в их дальнейшей взрослой жизни, научившись выживать в специально усложненных играх, ведущихся в частной школе. Подчинение авторитетам были важнее, чем "свободный обмен идеями" и "раскрытие разума". В результате, через совсем короткое время после прибытия Тьюринг, и так довольно стеснительный, стал еще более замкнутым. Алан нашел утешение в книгах и своей курсовой работе. В 1927, он смог разложить в бесконечный ряд "функцию обратного тангенса" из для тригонометрической формулы tan1/2xn -1x = x - x3/3 + x5/5 - x7/7 ...) даже без помощи элементарного дифференциального исчисления (Алан еще не был с ним знаком). Это было достаточно значительным достижением, чтобы его учитель математики присоединился к тем кто объявлял мальчика гением. Такое заявление не оказало должного влияния на школу. И, хотя достижение было экстраординарным, глава Шерборна, далеко не фанат науки, чувствовал, что мальчик теряет свое время и подвергается опасности стать научным специалистом а не образованным человеком. Такое пренебрежение к науке не было чем-то необычным для школы. Классный руководитель Алана в осеннем семестре, увлеченный латынью последователь классицизма, называл научные предметы "безыскусными" и полагал, что единственной причиной, по которой немцы потерпели поражение в Первой Мировой, было то, что они уделяли слишком много внимания науке и инженерии, и недостаточно религиозной мысли и обрядам.

Упорным стремлением изучать такие низкие предметы, Алан в конце концов заработал послабление. Так как он сделал несколько уступок формальностям школы, он был предоставлен самому себе. В 1928 он увлекся теорией относительности, и с головой ушел в перевод Относительность: специальная и общая теории Эйнштейна. Пожалуй, он был одним из немногих, если не единственным, шестнадцатилетним, сумевшим понять теории Эйнштейна. Тьюринг смог полностью осознать сомнения Эйнштейна насчет точности законов Галилея-Ньютона. Он смог даже вывести закон движения Эйнштейна ("разница между любыми двумя событиями в истории частицы должны быть максимальна или минимальна, при измерении относительно её мировой линии") просто на основании прочитанного (это не было специально отмечено в тексте). В 1929, Алан начал изучать квантовую физику. Это было горячее время, когда Шредингер и другие поставили на ноги то, что считалось мертвой наукой. Квантовой теории материи Шредингера было всего три года и Алан со своим другом Кристофером Моркумом погрузились в эти новейшие открытия. Алан был в своей стихии.

Королевский колледж Тьюринг изначально планировал поступать в колледж Троицы в Кембридже. Как он полагал, этот колледж был центром естественно-научной и математической мысли в Англии и он хотел быть там. После нескольких неудачных попыток сдать финальные экзамены, главным образом из-за того, что всегда воздерживался от участия в "классических" занятиях, он не смог получить стипендию в колледже Троицы, но смог получить стипендию в Королевском колледже, вторым в его списке.

Королевский колледж был в согласии с Аланом. Несмотря на то, что он все еще был чем-то вроде социального отщепенца, его учеба и свобода от мелких пыток жизни в частной школе, позволили ему расслабиться и найти свой ритм. Королевский колледж также оказался подходящим местом благодаря "калибру" преподавателей. Дж. Г. Харди, преподающий Тьюрингу, был одним из самых выдающихся математиков своего времени. Он недавно покинул Оксфорд, для того, чтобы занять кафедру Садлериана в Кембридже. Тьюринг был также окружен 85 студентами, изучающими естественные науки (в сравнении с одним или двумя товарищами, которых он был вынужден искать во времена учебы в Шерборне). Как происходит сегодня со многими старшеклассниками-ботаниками сегодня, колледж дал Алану шанс вылезти из его защитной оболочки и заставить мир играть по его правилам.

В 20е годы Кембридж завоевал славу в второго в мире места по уровню новой математики. Он смог завоевать это звание благодаря преподавателям и студентам, работающим в области квантовой физики и чистой математики. Он повсеместно признавался как место, уступающее только Геттингенскому Университету в в Германии, месту, которое поддерживалось таким гением, как Джон Фон Нейман.

Пути Фон Неймана и Тьюринга пересекались несколько раз в течении их жизни. В 1932, Тьюринг прочел книгу Фон Неймана Математические основания квантовой механики и был глубоко поражен ей. Его интерес к квантовой теории нашел продолжение в изучении работ других светил, таких как Шредингер и Гейзенберг. Знакомство с великими образцами новой науки совершенно увлекло молодого Тьюринга и побудило исследовать вопросы, поставленные их открытиями. Это увлечение и сосредоточенность на новых областях и привели Тьюринга на курс, ведущий к столкновению с Тремя вопросами математики Гилберта.

Один из Центральных Вопросов Математики и Машины Тьюринга В 1928 разработки в области чистой математики казались проникновением в её основы. Казалось, что мир был на грани раскрытия самих оснований математики. Что осталось совсем немного времени до того момента, когда будут раскрыты базовые аксиомы и математика станет всего-лишь набором легко применяемых правил, ведущих прямо и неизбежно к решению любой задачи. Ни одна проблема не останется недосягаемой для математики. Будучи примененной верно, математика сделает мир лучше (звучит как весь тот шум и гам, что окружает Интернет, не правда - ли ?).

На протяжении этого периода, в 1928, когда Гилберт, уже ставшим знаменитостью благодаря разработке квантовых пространств Гилберта, предложил несколько вопросов по самой сути математики, ответы на которые должны были произвести потрясения этой области знаний и "вытолкнуть" её на новые горизонты открытий и рассуждений. Программа Гилберта состояла в нахождении общей алгоритмической процедуры для ответа на все математические вопросы, или хотя бы в доказательстве существования подобной процедуры.

Центром его программы были три вопроса: Была ли математика полной? Т.е. может ли любое утверждение быть доказано или опровергнуто, основываясь на правилах самой математики? Была ли математика непротиворечивой? Т.е. нельзя ли при помощи правил математики доказать неверное утверждение? Была ли математика разрешимой? Т.е. возможно ли с помощью определенных шагов прийти к доказательству или опровержению некоего утверждения?

Хотя никто, включая самого Гилберта, не смог предложить решения этих вопросов в 1928 году, Гилберт был уверен, что ответом на каждый из них было да. Он думал, что для любой проблемы существовало решение, если не было доказано обратного. Это неверное предположение, сколь бы плохо оно не звучало, избавило математиков от бесплодных блужданий по темным аллеям. Итак, это все же было решением, как это понимается в математике.

Проблема заключалась в доказательстве того, что математика была полной, непротиворечивой и разрешимой. На том же собрании, юный математик Курт Гёдель нанес серьезный удар по этому ряду вопросов, показав, что математика должна быть неполной потому, что, как он показал, существуют утверждения, которые могут быть сформулированы, но которые нельзя ни доказать, ни опровергнуть. Облеченное в математическую форму предположение, по сути говорящее: "это утверждение недоказуемо" демонстрировало это неприятное (если вы, конечно, разбираетесь в вопросе) качество. Попытка доказать его правильность или неправильность ведет к противоречию. По крайней мере для той формы, в каком вопрос был сформулирован Гилбертом, Гёдель показал, что арифметика неполна. Были, конечно, свои нюансы, но все равно это было убийственно. Гёдель также показал, что математика не может быть непротиворечивой и полной. Тем не менее, он не смог расшатать ответ Гилберта на вопрос о разрешимости арифметики.

Профессор Харди, преподававший Алану, был, например, счастлив, что Гёдель не смог повергнуть последний вопрос Гилберта. С его точки зрения, механический процесс, который смог бы решить все математические задачи, оставил бы всех серьезных математиков без работы. Все уже было бы сделано.

Пришло время студенту наставлять учителя, по крайней мере, отчасти. После дня бега, занятия, которое Алан находил прекрасно проясняющим разум, он споткнулся об идею о машине простой, но совершенно невероятной конструкции, которая могла решить любую задачу, заложенную в неё. Это мощная машина должна была понимать только числа 0 и 1; это был первый двоичный компьютер. Она должна была перемещать механизм считывания/записи над бесконечной кассетой с этими числами и, основываясь на их конкретном расположении, решать различные типы задач. Прорыв Алана заключался в том, что он в четких терминах определил, каким конкретно был общий алгоритм. Машина Тьюринга, как должна была называться его конструкция, была мысленным экспериментом, который помог систематизировать возможности алгоритмов. Во время его исследования великолепных идей инспирированных этой машиной, Тьюринг обнаружил, что несмотря на простоту и обобщенную природу его алгоритма, существовали задачи, которые он не мог разрешить. Это открытие доказало, что предположения Гилберта были неверны, ответом на последний вопрос математики Гилберта, Enscheidungsproblem, было "нет, математика оказалась неразрешимой."

Юный математик их Королевского Колледжа достиг вершин в Кембридже в возрасте всего 23 лет. За свое достижение он получил подобающее количество аплодисментов и вновь стало звучать слово "гений". Если бы он сделал только это, он бы упоминался в некоторых исторических книгах и студенты старших курсов математических факультетов узнавали бы о нем в какой то момент. В любом случае, небольшое количество исторического бессмертия, настолько мрачного каким оно только может быть, было бы ему обеспечено. Но то, что он сделал дальше, изменило ход человеческой истории.

Работа

В 1939 году британское военное ведомство поставило перед Тьюрингом задачу разгадать секрет «Энигмы» – специального устройства, использовавшегося для шифровки радиограмм в германском военно-морском флоте и в «люфтваффе». Британская разведка раздобыла это устройство, но расшифровывать перехваченные радиограммы немцев не удавалось. Тьюрингу была предоставлена свобода действий. Он пригласил в свой отдел «Британской школы кодов и шифров» нескольких друзей-шахматистов. У него работал, например, Гарри Голомбек, ставший впоследствии известным судьёй ФИДЕ и судивший финальный матч на звание чемпиона мира между Фишером и Спасским.

27-летнего Тьюринга и его коллег охватил настоящий спортивный азарт. Немцы считали «Энигму» неприступной. Сложность дешифровки усугублялась тем, что в закодированном слове получалось больше букв, чем в оригинале. Тем не менее, Тьюринг уже через полгода разработал устройство, названное им «Бомбой», которое позволяло читать практически все сообщения «люфтваффе». А спустя ещё год был «взломан» и более сложный вариант «Энигмы», использовавшийся нацистскими подводниками. Это во многом предопределило успех британского флота.


Научные труды

Основные труды по математической логике, вычислительной математике. Ввёл математическое понятие абстрактного эквивалента алгоритма, или вычислимой функции, получившее затем название «машины Тьюринга». В 1935-1936 гг. Тьюринг создаёт теорию, которая навсегда впишет его имя в науку. Изложение этой теории - теории "логических вычисляющих машин" - позже войдёт во все учебники по логике, основаниям математики и теории вычислений. "Машины Тьюринга" станут обязательной частью учебных программ для будущих математиков и "компьютерщиков".

Награды

Заслуги Алана Тьюринга были по достоинству оценены: после разгрома Германии он получил орден, был включен в научную группу, занимавшуюся созданием британской электронно-вычислительной машины. В 1951 году в Манчестере начал работать один из первых в мире компьютеров. Тьюринг занимался разработкой программного обеспечения для него. Тогда он написал и первую шахматную программу для ЭВМ. Это был только алгоритм, потому что компьютера, способного применить эту программу, еще не существовало.

Шахматы были не единственным хобби Алана, он любил еще бег. В 1947 году на Всеанглийском марафоне занял почетное пятое место. Работая в университете, Тьюринг продолжал сотрудничать и с Департаментом кодов. Только теперь в центре его внимания были уже шифры советской резидентуры в Англии. В 1951 году он был избран членом королевского научного общества.

Последние годы

Он покончил жизнь самоубийством, отравившись цианистым калием. Раствор цианида Тьюринг впрыснул в яблоко. Надкусив его, он скончался. Тем не менее, его мать считала, что он отравился случайно, так как всегда небрежно работал с химикатами. Есть версия, по которой Тьюринг специально выбрал такой способ, чтобы дать матери возможность не верить в самоубийство.

Персональные инструменты
Инструменты