Методика расчета

Методом прогнозирования рассчитывают глубины зоны заражения первичным и вторичным облаком, площади зон возможного и фактического заражения.

1.1. Эквивалентное количество вещества по первичному облаку (Qэ1 ,т) определяют по формуле (1).

Q91 = K1K3K5K7'Q0 (1) где K1- коэффициент зависящий от условий хранения AXOB; для жидкого хлора K1 = 0,18; K3 — коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе другого AXOB; (для хлора K1=1) K5 — коэффициент, учитывающий степень вертикальной устойчивости воздуха (для инверсии — 1; для изотермии — 0.23; для конвекции — 0.08); K7' — коэффициент, учитывающий влияние температуры воздуха на первичное облако; для сжатых газов K7' = 1; Q0 — количество выброшенного (разлившегося) при аварии вещества, т.

1.2. Время испарения аммиака (T, ч) с площади разлива определяют по формуле:

 $T = h \cdot d / K2 \cdot K4 \cdot K7''$ (2) Где h -толщина слоя AXOB, M; (h = 0.05 M);

d – плотность AXOB, т/м³ (для жидкого хлора d= 1.553 т/м³); K2 – коэффициент, зависящий от физико-химических свойств AXOB (K2=0,052 для хлора); K4 – коэффициент, учитывающий скорость ветра; K7" – коэффициент, учитывающий влияние температуры воздуха на вторичное облако;

1.3. Эквивалентное количество вещества по вторичному облаку (Qэ2, т) рассчитывают по формуле:

Qэ2=(1-K1)·K2·K3·K4·K5·K6·K7"·Q0/hd (3), где K6-коэффициент, зависящий от времени, прошедшего после начала аварии (N, y);

$$K6=T^{0.8}$$
 (4)

1.4.Полную глубину зоны заражения (Г, км), обусловленную воздействием первичного и вторичного облака АХОВ, вычисляют по формуле:

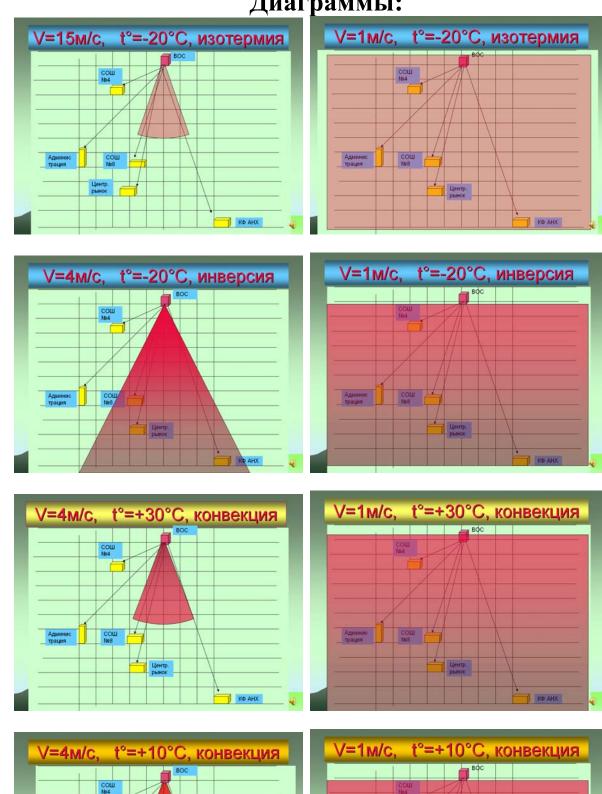
 $\Gamma=\Gamma'+0,5\Gamma''$ (5) где Γ' - наибольший из размеров глубины зоны заражения от первичного ($\Gamma 1$, км) и вторичного ($\Gamma 2$, км) облака, км; Γ'' - наименьший из размеров $\Gamma 1$ и $\Gamma 2$,км. Используя таблицы и метод линейной интерполяции, рассчитывают $\Gamma 1$ и $\Gamma 2$. По формуле (5) вычисляют полную глубину зоны заражения: Сопоставляяя величины полной глубины зоны заражения, направление ветра, взаимного расположения объекта и места аварии определяют, окажется или нет объект в зоне возможного заражения облаком AXOB. На карту (план, схему) наносят зону возможного заражения в виде сектора с углом φ , зависящим от скорости ветра, радиус сектора равен Γ . Величина сектора соответствует месту разлива. Биссектриса угла φ совпадает с осью зоны и ориентирована на направление ветра.

1.5. Площадь зоны возможного заражения облаком AXOB (Sв, мм²) рассчитывают по формуле:

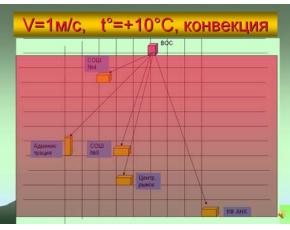
Sв=8,72·10⁻³· Γ ² · ϕ **(6)** где ϕ – угловые размеры зоны возможного заражения, град.

1.6. Площадь зоны фактического заражения ($S\Phi$, км²) вычисляют по формуле:

 $S\varphi = K8 \cdot \Gamma^2 \cdot N^{o.2}$ (7) где K8 - коэффициент, зависящий от степени вертикальной устойчивости воздуха (0.081 – при инверсии; 0.133 – при изотермии; 0.235 – при конвекции); N - время, прошедшее после начала аварии, ч (если не задано, берется время испарения хлора с подстилающей поверхности).


Справочные данные

Данные	Скорость ветра, температура и вертикальная											
	устойчивость воздуха											
	15 м/с	1 м/с	4 м/с	1 м/с	4 м/с	1 м/с	4 м/c	1 м/с				
	-20°	-20°	-20°	-20°	+30°	+30°	+10°	+10°				
	изоте	рмия	инверсия		конвекция							
К1	0,18											
К2	0,052											
К3	1,0											
К4	5,68	1,0	2,0	1,0	2,0	1,0	2,0	1,0				
К5	0,23	0,23	1,0	1,0	0,08	0,08	0,08	0,08				
К7'	0,3	0,3	0,3	0,3	1,2	1,2	0,8	0,8				
К7"	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0				
К8	0,133	0,133	0,081	0,081	0,081	0,235	0,235	0,235				
V, м/с	88	6	21	5	28	7	28	7				
ф, град	45	180	45	180	45	180	45	180				


Результаты расчетов

Расчетные	Скорость ветра, температура и вертикальная										
данные	устойчивость воздуха										
	15 м/с	1 м/с	4 м/с	1 м/с	4 m/c	1 м/с	4 м/с	1 м/с			
	-20°	-20°	-20°	-20°	+30°	+30°	+10°	+10°			
	изотермия		инверсия		конвекция						
T=N, час	0,26	1,493	0,7465	1,493	0,7465	1,493	0,7465	1,493			
К6	0,34	1,378	0,79	1,378	0,79	1,378	0,79	1,378			
Qэ1, т	0,025	0,025	0,108	0,108	0,035	0,035	0,023	0,023			
Qэ2, т	0,488	0,348	1,735	1,513	0,138	0,242	0,138	0,242			
Г1, км	0,145	0,556	0,609	1,3	0,334	0,674	0,455	0,533			
Г2, км	0,679	2,434	2,395	5,886	0,66	1,928	0,66	1,928			
Г, км	0,752	2,712	2,7	6,536	0,827	2,265	0,888	2,195			
SB, KM ²	0,22	11,54	2,86	60,05	0,268	8,052	0,309	7,562			
SФ, км ²	0,057	1,06	0,557	3,75	0,152	1,306	0,175	1,227			

Диаграммы:

